GMRF Estimation under Topological and Spectral Constraints
نویسندگان
چکیده
We investigate the problem of Gaussian Markov random field selection under a non-analytic constraint: the estimated models must be compatible with a fast inference algorithm, namely the Gaussian belief propagation algorithm. To address this question, we introduce the ?-IPS framework, based on iterative proportional scaling, which incrementally selects candidate links in a greedy manner. Besides its intrinsic sparsity-inducing ability, this algorithm is flexible enough to incorporate various spectral constraints, like e.g. walk summability, and topological constraints, like avoiding the formation of short loops. Experimental tests on various datasets, including traffic data from San Fransisco Bay area, indicate that this approach can deliver, with reasonable computational cost, a broad range of efficient inference models, which are not accessible through penalization with traditional sparsity-inducing norms.
منابع مشابه
A NEW MEMETIC SWARM OPTIMIZATION FOR SPECTRAL LAYOUT DESIGN OF BRACED FRAMES
For most practical purposes, true topology optimization of a braced frame should be synchronized with its sizing. An integrated layout optimization is formulated here to simultaneously account for both member sizing and bracings’ topology in such a problem. Code-specific seismic design spectrum is applied to unify the earthquake excitation. The problem is solved for minimal structural weight un...
متن کاملA Nested Recursive Approach to MAP Estimation based on Gauss-Markov Random Fields
Many large multidimensional space-time signal processing and data inversion applications (e.g. deconvolution) require some form of regularization to extract meaningful information. A popular approach to regularizing such problems in a statistical context is via a Gauss-Markov Random Field (GMRF) prior model in a Maximum A Posteriori (MAP) estimation framework. While providing good reconstructio...
متن کاملGraph Learning from Data under Structural and Laplacian Constraints
Graphs are fundamental mathematical structures used in various fields to represent data, signals and processes. In this paper, we propose a novel framework for learning/estimating graphs from data. The proposed framework includes (i) formulation of various graph learning problems, (ii) their probabilistic interpretations and (iii) associated algorithms. Specifically, graph learning problems are...
متن کاملModel-Based Texture Segmentation
An efficient and robust type of unsupervised multispectral texture segmentation method is presented. Single decorrelated monospectral texture factors are assumed to be represented by a set of local Gaussian Markov random field (GMRF) models evaluated for each pixel centered image window and for each spectral band. The segmentation algorithm based on the underlying Gaussian mixture (GM) model op...
متن کاملA Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method
Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...
متن کامل